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Universidade Federal de Pernambuco
Recife, Brazil

ORCID 0009-0006-9814-0117

Humberto Tavora
Centro de Informática
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Abstract—With advancements in nanotechnology, digital sys-
tems are becoming increasingly complex and miniaturized. This
miniaturization increases susceptibility to process defects, ne-
cessitating innovative approaches to ensure the reliability and
robustness of digital circuits. Cartesian Genetic Programming
(CGP) has emerged as a promising method for evolving defect-
tolerant digital systems. CGP enables the search for degenerate
digital circuit designs that can be used in redundancy strategies
to mitigate accuracy reduction caused by process defects. This
research aims to identify the optimal hyperparameters for the
CGP algorithm. By systematically examining these parameters,
we seek to understand their effects on the performance and effi-
ciency of the evolutionary search for degenerate digital designs.
We illustrate our approach by analyzing the defect-robustness of
evolved multiplexer circuits, contributing to the field of defect-
tolerant circuit design.

Index Terms—Cartesian Genetic Programming, Multiplexers,
Defect tolerance, Nanotechnology, Digital Systems

I. INTRODUCTION

As nanotechnology progresses, precision in design and
fabrication becomes paramount and must be reconsidered
[1]. Electronic Design Automation (EDA) appears to be an
essential ally in this endeavor. The convergence of nanotech-
nology and EDA is critical for the continued innovation
and development of next-generation electronic systems [2].
Genetic programming, specifically Cartesian Genetic Program-
ming (CGP), is a possible tool and well-suited for synthesizing
nanoscale digital systems. Natural evolution-based strategies
for handling defects reemerge in the evolution of digital cir-
cuits, especially when optimization toward minimal genotypes
is avoided. This can be achieved by evolving circuits in
the presence of defects, enhancing their robustness [3], [4].
CGP will not replace established and optimized EDA tools.
However, CGP helps to explore neglected parts of the design
space that may offer interesting solutions to the challenge of
an increasing number of process defects.

This study focuses on the multiplexer, a versatile circuit
widely used in electronics. Multiplexers are crucial in com-
munication networks, where they combine data streams from
multiple sources and transmit them over a single data channel
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[5]. Moreover, multiplexers can be used as logic function
generators employed, e.g., in the programmable logic blocks of
FPGAs. The flexibility and broad applicability of multiplexers
make them an ideal subject for exploring the robustness of
evolved circuits using CGP. Through a series of experiments
with these circuits, we will collect and analyze hyperparame-
ters, evaluating their impact on the search performance using
specific indicators detailed throughout this study.

Our goal is to identify the optimal combination of hy-
perparameters for our evolutionary algorithm and provide
insights for future research. The CGP algorithm searches for
degenerate digital designs, i.e., circuits that implement the
same logic function with a different schematic. Additionally,
we will assess the circuits’ resilience to defects, contributing
to the understanding of defect-tolerant design in nanoscale
digital systems. This comprehensive analysis aims to advance
the field of evolutionary algorithms and enhance the robustness
of digital circuits.

II. MULTIPLEXERS

In modern electronic systems, efficient data management is
critical, and multiplexers (MUX) play a pivotal role in achiev-
ing this efficiency. For instance, in communication networks,
multiplexers allow multiple data streams to be combined and
transmitted over a single channel, optimizing bandwidth usage,
increasing the amount of data that can be sent over the network
within a certain amount of time [5]. A multiplexer is also
called a data selector [6]. By using 2N input lines controlled
by N select lines, multiplexers enable the selection and routing
of specific input signals to a single output line. This not
only simplifies circuit design but also reduces complexity
and wiring, enhancing overall system performance. A 4:1
multiplexer is depicted in Fig. 1, with its four inputs and one
output controlled by two select line, exemplifying the MUX
functionality [7].

III. GENETIC PROGRAMMING

High prototyping costs make modeling, simulation, and
optimization techniques essential. Most microelectronics pro-
cesses are standardized and can be simulated using existing
EDA tools for process, device, and system simulation [8].
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Fig. 1: Ideal 4x1 MUX circuit using only NANDs gates implemented as a
direct acyclic graph structure.

Using a computer to model circuits is particularly advan-
tageous as circuit complexity increases, allowing for efficient
exploration of a vast design and optimization space. Moreover,
the computer’s ability to generate non-obvious connections,
which might initially seem unpromising to a human, can lead
to innovative and highly effective solutions. In our study,
we tackle the modeling challenge using a form of Genetic
Programming (GP), an intriguing technique that has proven
effective in similar works [9], [10], [11].

Employing the concept of ”survival of the fittest”, Genetic
Programming (GP) is an evolutionary computation technique
in which computer programs evolve randomly, with mutations
and selections occurring probabilistically, instead of following
a fixed deterministic pattern. The fitness of a program is
evaluated using a fitness function tailored to the specific
problem [12]. In the case of MUXs, our fitness function was
defined as the ratio of the number of correct outputs by the
total possible outputs. For example, in a circuit with 2 inputs
(4 possible outputs) and 3 correct outputs, the fitness would
be 75%.

It is believed that the repeated process of mutation and
selection leads to individuals increasingly adapted to their
environment, i.e., it is assumed that they have increasing fitness
[13]. The most critical and time-consuming part of the CGP
cycle is fitness evaluation, which mainly limits the scalability
of search-based design [14].

Our implementation of the CGP algorithm can be found in
the GitHub Logic-Circuits-Evolution repository. Details will
be reported elsewhere. Following a series of executions, a total
of 9 distinct MUX designs were organized into a library (each
MUX was randomly assigned a number from 1 to 9 as its
identifier). A preview of this library is depicted in Fig. 2.

IV. OPTIMIZATION STRATEGY

The study of hyperparameters is a promising area and is
generally associated with Machine Learning and Deep Learn-
ing. CGP, as a subset of Machine Learning, however, does not
have as many discussions dedicated to the improvement of its
multiple hyperparameters.

Given that, the experiments were conducted with a focus
on extracting useful insights, aimed at optimizing CGP for
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Fig. 2: Representation of MUX 4:1 designs of varying sizes constructed using
only NAND gates according to the proposed method. Direct acyclic graphs
where blue boxes denote inputs, 4 MUX inputs (I0, I1, I2, I3) in blue and 2
MUX selectors (S0, S1) in yellow, NAND gates are formed by ellipses, and
1 output depicted as a grey box. The full library is available at our GitHub
repository, see the Sec. “Online resources”.

the MUX’s design automation. The goal was to enhance our
understanding and performance of CGP through systematic
hyperparameter tuning, different combinations were explored
and investigated through grid-search. We analysed a total of
six hyperparameters. Among these parameters are genotype
size, mutation rate, noise variation applied to each fitness eval-
uation, and the number of offspring per generation, denoted
as Lambda (λ). Each of these hyperparameters impacts the
evolution process, affecting either the time required or the
number of generations needed to achieve 100% fitness.

Increasing genotype size extends computation time for
each generation due to more NAND operations during fitness
calculation. Although genotype size is a genome parameter,

https://github.com/HumbertoTavora/Logic-Circuits-Evolution


TABLE I: Hyperparameters optimization (For the platform details, please, check the online resources). The following hyperparameters were considered in the
experiments: Genome length (G.Length), mutation rate (M.R), noise range (N.R) and number of offspring (λ). The optimization criteria included: Average
execution time (AET), total time taken for the execution of ’N’ different genotype lengths (TTT) and average generation count (AGC).

(a) G.Length = 40

M.R N.R λ AET TTT AGC
0.05 0.003 6 30.94 0:05:09 4531.0
0.05 0.003 8 19.42 0:03:14 2275.5
0.05 0.003 10 18.14 0:03:01 1641.7
0.05 0 6 20.29 0:03:22 2778.5
0.05 0 8 29.87 0:04:58 3171.1
0.05 0 10 10.49 0:01:44 910.1
0.10 0.003 6 29.92 0:04:59 4053.8
0.10 0.003 8 27.96 0:04:39 2980.7
0.10 0.003 10 23.63 0:03:56 2069.3
0.10 0 6 21.55 0:03:35 3024.2
0.10 0 8 28.58 0:04:45 2937.8
0.10 0 10 18.67 0:03:06 1708.8
0.15 0.003 6 23.33 0:03:53 3300.0
0.15 0.003 8 25.92 0:04:19 3045.7
0.15 0.003 10 21.80 0:03:38 2179.5
0.15 0 6 23.31 0:03:53 3367.7
0.15 0 8 17.65 0:02:56 1914.6
0.15 0 10 33.10 0:05:30 3112.2

(b) G.Length = 50

M.R N.R λ AET TTT AGC
0.05 0.003 6 10.78 0:01:47 1611.0
0.05 0.003 8 20.35 0:03:23 2324.6
0.05 0.003 10 22.04 0:03:40 2151.5
0.05 0 6 18.05 0:03:00 2573.7
0.05 0 8 9.84 0:01:38 1070.5
0.05 0 10 11.30 0:01:53 1010.3
0.10 0.003 6 14.53 0:02:25 1991.2
0.10 0.003 8 26.20 0:04:22 2855.5
0.10 0.003 10 11.30 0:01:53 1016.2
0.10 0 6 24.29 0:04:02 3338.8
0.10 0 8 29.59 0:04:55 3095.8
0.10 0 10 15.94 0:02:39 1518.4
0.15 0.003 6 12.49 0:02:04 1729.5
0.15 0.003 8 14.49 0:02:24 1628.4
0.15 0.003 10 14.12 0:02:21 1263.0
0.15 0 6 12.49 0:02:04 1813.2
0.15 0 8 21.26 0:03:32 2360.8
0.15 0 10 13.29 0:02:12 1178.4

(c) G.Length = 60

M.R N.R λ AET TTT AGC
0.05 0.003 6 21.56 0:03:35 2772.7
0.05 0.003 8 11.77 0:01:57 1295.4
0.05 0.003 10 10.52 0:01:45 868.5
0.05 0 6 14.86 0:02:28 1914.2
0.05 0 8 11.14 0:01:51 1167.2
0.05 0 10 17.18 0:02:51 1452.3
0.10 0.003 6 6.61 0:01:06 853.0
0.10 0.003 8 17.18 0:02:51 1660.0
0.10 0.003 10 19.49 0:03:14 1635.2
0.10 0 6 7.47 0:01:14 985.4
0.10 0 8 9.39 0:01:33 987.3
0.10 0 10 7.40 0:01:13 628.2
0.15 0.003 6 7.71 0:01:17 1102.1
0.15 0.003 8 13.10 0:02:10 1332.8
0.15 0.003 10 21.79 0:03:37 1788.2
0.15 0 6 12.57 0:02:05 1637.9
0.15 0 8 24.12 0:04:01 2493.3
0.15 0 10 19.53 0:03:15 1625.8

it is included due to its relationship with mutation rate. For
instance, a genotype with 40 genes and a 10% mutation
rate mutates 4 genes. Raising the mutation rate to 12% has
minimal impact since only integer parts are considered. Thus,
the employed hyperparameter grid was chosen to explore
diverse scenarios. Another critical aspect is noise variation.
Each genome has two fitness values: one real and one with
noise. A noise rate (N.R) of 0.003 means the noisy fitness
fluctuates by ±0.003 from the real fitness, aiding in exploring
different forms and reducing local maxima. Lastly, the number
of offspring per generation (λ) is relevant. More offspring per
generation increase the computational cost due to the larger
number of genomes.

V. RESULTS

The results are presented in Table I. We used a manual
implementation of grid search, conducting 10 evolutions for
each hyperparameter combination. It was ensured that the
discovered MUX circuits had different sizes to avoid com-
binations that predominantly resulted in minimal solutions.
In other words, 10 MUX circuits with different sizes and
100% fitness were found by the evolutionary search. Each
combination is evaluated based on time metrics, where we can
observe the time required to obtain each of the 10 different
sizes of MUXs (TTT) and the average time each evolution took
(AET). Additionally, we can also observe the average number
of generations each evolution required to reach maximum
fitness (AGC).

The Table I, reveals a general trend of performance improve-
ment as genotype length (G.Length) increases. This aligns
with our expectations, as more genes enhance the probability
space for finding a combination that achieves 100% fitness.
The impact of increasing the mutation rate (M.R) is more
pronounced with 60 genes. Thus, if G.Length increases, the
mutation rate should be reevaluated. The optimal configuration

was achieved with a 10% mutation rate, mutating 6 genes per
offspring. The majority of the best combinations have noise
range (N.R) of 0, indicating no noise during evolution. While
this result is expected, it is not universally optimal. In more
complex circuits, noise can help the evolutionary process by
temporarily reducing fitness to overcome local maxima. Lastly,
the number of offspring per generation also showed consistent
results, where increasing the number of offspring generally
enhances performance indicators.

The combination that produced the best results included the
largest genotype size in the search grid (60 genes), a 10%
mutation rate. About the noise, and a λ, there is 2 good
combinations that are related then selves. The combination
without noise and with 10 offspring per generation results
in a lower average number of generations required to reach
the 10 different circuits. In contrast, the combination with
noise and only 6 offspring per generation resulted in a higher
average number of generations needed, but found the 10
different circuits in less time. This observation is logical, as a
larger number of offspring leads to more fitness calculations
being performed in each generation, thereby proportionally
increasing the time required. Furthermore, this disparity in the
number of generations is expected because a higher number of
offspring facilitates a more comprehensive search within the
probability space. Consequently, the number of generations
is reduced at the expense of increased execution time due to
the additional fitness evaluations needed for each generation.
Analyzing each hyperparameter individually, these parameters
yielded the bests two results. This combination provides a
foundational basis for future experiments, offering a reference
point for tackling more complex circuits.

The evolutionary search for several distinct MUX designs
of varying sizes was motivated by the presence of defective
NAND gates in modern nanoelectronics. Thus, we investigated
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Fig. 3: Comparison of fitness distributions of different 4:1 multiplexers. The
distributions were computed assuming a 5% defect probability for each NAND
gate.

the fitness distribution of each design when a defect probability
of 5% was attached to each NAND. A defect NAND gate
implements an altered truth table and the same kind of defect
was assumed for all NAND gates. The ideal NAND-based
4x1 MUX circuit can be represented by the direct acyclic
graph shown in Fig. 1. To determine its fitness distribution,
100,000 fitness calculations were performed employing defec-
tive NAND gates. Employing the same approach, the fitness
distributions of the evolved MUX library were also assessed.
The resulting distributions are shown in Fig. 3.

It is perceived that the ideal 4x1 MUX still has a better fit-
ness distribution compared to the ones of two selected designs
from the evolved MUX library. However, as demonstrated
in [4], a more detailed approach should directly search for
designs with average high fitness and a narrow distribution
width. In the present study, only an evolutionary search for
degenerated designs with ideal fitness in the absence of defects
was performed. Nevertheless, the result shown in Fig. 3
demonstrate that degenerated designs will lead to different
fitness distributions. Thus, a corresponding CGP search for
the best performing circuit can be conducted. Additionally,
the experimental scenario considered a failure chance of 5%,
which can be deemed low, given that the solution comprises
only a few NAND gates. Future research should conduct a
more detailed analysis, considering higher failure probabilities.
Another interesting topic for evaluation is the application
of redundancy through established techniques, such as von
Neumann’s NAND multiplexing. It would be valuable to
assess how circuits evolved using these techniques perform
relative to the ideal one.

VI. CONCLUSIONS

In this article, we made several contributions to the EDA
of multiplexers. Firstly, through the use of the grid search
technique, we gained important insights into the hyperparame-
ters used in Cartesian Genetic Programming. Our experiments
indicated better performance when the noise range is set to
zero. Additionally, the number of offspring appears to be

indirectly proportional to performance. We showed that CGP
search can lead to degenerate MUX designs with different
fitness distributions in the presence of NAND defects. Our
analysis indicates that redundancy techniques and higher fail-
ure probabilities should be examined in future research to
improve the robustness of CGP-designed circuits. This work
provides a foundational basis for optimizing the tolerance
against process defects of more complex circuits in subsequent
studies.

ONLINE RESOURCES

The genetic program has been implemented as a Python
module, facilitating its integration into diverse Python projects.
A sample project is available in the GitHub Logic-Circuits-
Evolution repository.

REFERENCES

[1] R. Quhe, L. Xu, S. Liu, C. Yang, Y. Wang, H. Li, J. Yang,
Q. Li, B. Shi, Y. Li, Y. Pan, X. Sun, J. Li, M. Weng, H. Zhang,
Y. Guo, L. Xu, H. Tang, J. Dong, J. Yang, Z. Zhang, M. Lei,
F. Pan, and J. Lu, “Sub-10 nm two-dimensional transistors: Theory and
experiment,” Physics Reports, vol. 938, pp. 1–72, 2021, sub-10 nm two-
dimensional transistors: Theory and experiment. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0370157321003252

[2] O. Paranaiba, P. Oliveira, R. Marks, G. Novy, M. Vieira, L. O. Luz, P. A.
Silva, R. Ferreira, J. Ramirez, J. A. Nacif et al., “Design automation
for emerging technologies,” Journal of Integrated Circuits and Systems,
vol. 17, no. 3, pp. 1–11, 2022.

[3] N. Milano, P. Pagliuca, and S. Nolfi, “Robustness, evolvability and
phenotypic complexity: insights from evolving digital circuits,” Evolu-
tionary Intelligence, vol. 12, no. 1, pp. 83–95, 2019.

[4] N. Milano and S. Nolfi, “Robustness to Faults Promotes Evolvability:
Insights from Evolving Digital Circuits,” PLOS ONE, vol. 11, no. 7, pp.
e0 158 627 – 17, 2016.

[5] L. Xingjun, S. Zhiwei, C. Hongping, and M. R. J. Haghighi, “A new
design of qca-based nanoscale multiplexer and its usage in communica-
tions,” International Journal of Communication Systems, vol. 33, no. 4,
p. e4254, 2020.

[6] I. Varun and T. K. Gupta, “Ultra-Low Power NAND Based Multiplexer
And Flip-Flop,” 2013 Nirma University International Conference on
Engineering (NUiCONE), pp. 1–5, 2013.

[7] V. Vaishali, S. Rajarajeshwari, and C. Saravanakumar, “A study on low
power implementation of multiplexer,” Int. J. Emerg. Technol. Comput.
Sci. Electron, vol. 25, no. 5, 2018.

[8] B. F. Romanowicz, Methodology for the Modeling and Simulation of
Microsystems. Springer Science & Business Media, 1998, vol. 2.

[9] L. Sekanina and Z. Vasicek, “Approximate circuit design by means
of evolvable hardware,” in 2013 IEEE International Conference on
Evolvable Systems (ICES), 2013, pp. 21–28.

[10] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate dig-
ital circuits design,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 3, pp. 432–444, 2015.

[11] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b: li-
brary of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, 2017, pp. 258–261.

[12] A. Manazir and K. Raza, “Recent developments in cartesian genetic pro-
gramming and its variants,” ACM Computing Surveys (CSUR), vol. 51,
no. 6, pp. 1–29, 2019.

[13] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+ 1)
evolutionary algorithm,” Theoretical Computer Science, vol. 276, no.
1-2, pp. 51–81, 2002.
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